Modeling of Neuron Signaling from Dendriteto Axon Hillock

BENG 221 Problem Solving Report

Sung Min Kim
David Oda
Pokman Cheng

Table of Contents

Lo INtrodUCHION.t e 3
2. Problem Setup.......oueiniiti e 3
B N 01010 5) o PR 4
2.2. Differential EQUation............o oot 4
3 SOIULION. . 5
3.1. Analytical SOIUtION.oouiii i 5
3.2. Numerical Solution: 2 Dimensional Forward Finite Difference Method............ 5
3.3. Numerical Solution: MATLAB PDE ToolboX..........ccovviiiiiiiiiiiiiin, 5
A RESUIES . ettt e 5
5. CONCIUSION .ottt e e 7
6. Future Work. ... e 8
T REIETENCES. ...ttt 8
B APPEIIAICES. . .ttt et 9
8.1. Appendix A: Derivation of Analytical Solution..................c.ocooiiiiie. 9
8.2. Appendix B: Derivation of 2 Dimensional Forward Finite Difference Method..11
8.3. Appendix C: MATLAB PDE ToOIbOX.......couiiuiiiiiiiiiiiiiiiiiinee, 12
8.4. Appendix D: MATLAB Code......cccouiiiiiiiiiiiiiii e 14
8.5. Appendix E: MATLAB PDE Toolbox Code...........cccveviiiiiiiiiiiinien. 17

1. Introduction

The functional unit of the nervous system is a neuron, which :::::..:,. \ !\
processes and transmits signal via electrical conduction. A \

typical neuron consists of three main parts: dendrite, soma, and soma 3 é
an axon (Fig 1). The axon hillock is the region of the soma from ~

which the axon originates. _
::‘tls:;dp-ol.nlmu'

Neuron signaling works as follow: First, neurotransmitters from

a presynaptic axon bind to ligand-gated ion channels of a

postsynaptic dendrite, opening the channels. Through these

channels certain ions flow in, get diffused and alter membrane Ason

potential. When the potential at the axon hillock exceeds a

certain triggering threshold value, an action potential is

generated and propagated to the end of axon. Figure 1. Structure of neuron

Input signals can either be excitatory or inhibitory.
Excitatory signals are caused by the influx of cations
which raises the membrane potential (Fig. 2A),
increasing the probability of an action potential ! ‘ ~o
generation at the axon hillock. Inhibitory signals are o 0] o s

(1 Py, rartri — e
caused by a combination of the influx of anions and /\ —~ NS
the efflux of cations which lowers membrane of | Lo
potential (Fig. 2B) decreasing the probability of

action potential generation. Figure 2. Excitatory and inhibitory input

b A‘.] B‘_

input signals can be restored back to its original oo *Hm o % 4 e
state by various kinds of ATP-driven pumps which ;WW:&.“,

are distributed throughout the cell membrane. For
example, Na'/K'-ATPase (Fig. 3) pumps two
potassium ions in and three sodium ions out of the .
cell to make the membrane potential more negative, el space X
compensating the effect of excitatory input signal. Figure 3. Na'/K" pump

Na

The altered membrane potential caused by these Ectraceiiular space ” l

In this study, we modeled the membrane potential of soma that accounts for the following
three dynamic properties:

1. Input impulse, both inhibitory and excitatory, caused by the opening of ion channels
2. Restoring force by the ATP-driven pumps
3. Diffusion of electrical potential in soma

2. Problem Setup

Our goal is to find the function u(X, y, t) which we define as the amount of potential deviation
from the resting state at location (x,y) of the soma at time t. To simplify, we made the
following assumptions.

2.1. Assumptions

axon

1. The shape of the soma is square and flat @ Restoring pump
enough to be treated as 2D plane (Fig. 4). @@ iopuchannel

2. Axon is located at the center of the soma.

3. Restoring pumps are distributed uniformly
throughout the membrane (Fig. 4-yellow).

4. Restoring force is linearly proportional to
the value of u, which therefore can be
expressed as —Cu(x, Y, 1). Figure 4. Simplified model of neuron

5. There is no ion flux at the membrane other than through the input channels or
restoring pumps.

6. We set the maximum number of input channels to be 4 for the ease of demonstration
but this number can be increased if necessary.

7. We placed input channels on the boundary of the square (Fig 4-red) but it can be
placed on the middle of the square if necessary (Fig 4-green).

8. Diffusivity (D) of electrical potential inside the cell is uniform.

9. Input impulse exist only at t = 0.

2.2. Differential Equation

Putting all these conditions into an equation using D and C as diffusivity and restoring force
constant respectively, we get

PDE: 2 —p &% 4+ 2

at oz T aye)T ¥ (p4.L)

du
BC: — 0,y,)=0
0x ©.%9 (L, p3)

ou
a (Ls ya t)=0 (0.?1)

ou _
5 (60.0=0

(p2,0)

g—; XL, t)=0 Figure 5. Top view of modeled neuron

IC: (X, y) = Vi8(X)8(y-p1) + V28(X-p2)8(y) + V38(x-L)8(y-p3) + Vab(x-p4)8(y-L)

Above IC is the case where there are total of four input channels, one on each side of the
square soma (Fig. 5). V,, is positive for excitatory input signal and negative for inhibitory
input signal.

3. Solution

3.1. Analytical Solution

A 1 woo Kk . .
U(X, y’ t) = % + EZk:l(Ak,OCOS(%) + Ao'kCOS(¥)) exp(_D (TT[) t) +

mrx. nT mrt nt eXp (_ Ct)
Tin1 Zme1 AmnCos(-)c0s(=) exp(=D(C)* + (D)

Am,n=% {Vl cos (nﬂLpl) + V, cos (@) + V5 cos(mm) cos (nang) + V, cos(nm) cos (@)}

See Appendix A for its derivation.

3.2. Numerical Solution: 2 Dimensional Forward Finite Difference M ethod

DAt DAt
ux,y,t+1 = Ax2 (ux+1,y,t 'zux,y,t+ ux—l,y,t)+ Ay? (ux,y+1,t 'Zux,y,t+ ux,y—l,t) -CAt ux,y,t

See Appendix B for its derivation.

3.3. Numerical Solution: MATLAB PDE Toolbox

See Appendix C for its usage.

4. Results
We used the following values for the constants in our simulation.

Table 1. Values for constants

Constant description Variable Value

Diffusivity of electrical potential insoma | D 7.0%10™ um-’/s
Restoring force constant C 4.0%107 s
Side length of soma L 1.0 um
Input signal voltage Vi -30~+30 mV

Fig. 6A shows the potential change over time at the center of soma plotted from the analytical
solution. As the number of excitatory input increases, each with the magnitude of 30 mV, the
membrane potential increases. If we take the threshold to be 30 mV, an action potential is
generated only when there are more than two excitatory input signals.

5

Fig. 6B shows the effect of inhibitory inputs, each with the magnitude of 30 mV. When there
are three excitatory and one inhibitory inputs, the potential at the center does not exceed the
threshold. Therefore, the presence of one inhibitory input is enough to prevent the action
potential generation.

Vim at the center Wm at the cenler

0.06 006 r . v . v r
A ——1EPSP B —r
0.05| 2EPSP 7 B JEPSP +1 PSP
——3EPSP 004 / % 2 IPSP H
004} = 4 EPSP / B Theshold
~ Threshold 7 -
0.03 f—H S ol [/ ez
! / .
] - — ~
gomp [/ H o) e, S
2 / Sy e 2 oL T
£ o} Jf o - IS
R TR, e e] \ S
— =
o~ — 002
o0}
004

o0z}

r L " " " L " L 006 L L L L L L L

0835 50 100 150 200 250 300 30 400 0 8 100 180 20 250 30 30 40

Time (second) Time (second)

Figure 6. Analytical solution in the presence of excitatory and inhibitory input signals

Fig. 7 shows how numerical solution obtained from 2-dimensional finite difference method
(Fig. 7-blue line) approaches the analytical solution (Fig. 7-green line) as Ax, Ay and At
decreases. Compared to 1-dimensional case, the 2D finite difference method solution requires
larger amount of decrease in Ax, Ay and At and thus more computation time to achieve a
reasonable approximation.

A B C

At = 0.01 At =0.01 At =0.002
Ax = Ay = 1/12 Ax = Ay = 1/a5 Ax = Ay =1/60

Figure 7. Comparison of analytical and 2D finite difference method

Fig. 8 compares the analytical and numerical solution in the entire region of the soma from
t=0s to t=400s with two excitatory and two inhibitory inputs. We can see that the pattern of
potential diffusion is very similar in three solutions. As time goes on, the initial peaks are
flattened and the membrane potential eventually restores its resting state.

Fig. 9 shows the 2D potential change when the soma is of a circular shape using MATLAB
PDE Toolbox.

PDE Toolbox 2D FDM Analytical Solution

t=0s

t=20s

t=100s

t=400s

Figure 8. Comparison of analytical and numerical solutions for the entire region of soma

t=0s t=20s t=100s t=400s
Figure 9. Potential change in a soma of circular shape

5. Conclusion

In this study, we created a model for monitoring the electrical potential in the soma of a
neuron. We have shown that it successfully covers the basic features of neuron signaling,

7

such as excitatory and inhibitory inputs as well as the restoring force caused by ATP-driven
pumps ,and the diffusion of the electrical potential over the region of the soma.

Our model is scalable in that we can increase the number of inputs at any location in the soma
by properly modifying our initial condition, uyp(X,y). We can monitor the potential at any
specific location or the entire region of the soma. Also, we can predict whether the action
potential would be generated under certain conditions. In this respect, our model can serve as
a basic module to quantitatively understand complex behavior of the nervous system.

The PDE toolbox is a powerful way to solve 2D PDE’s very easily without having to worry
about setting up correct meshes when using the finite element method. However, the PDE
toolbox does have its limitations. With the PDE toolbox we are not able to modify the
equation to include a restoring force. This means that over time if enough excitatory
potentials were fired, we would see an accumulation of voltage that wouldn’t normally occur.
While the PDE toolbox does provide a great deal of simplicity, it can also lead to inaccurate
solutions depending on what needs to be modeled.

6. Future Work

To build a more realistic model, there are several things to be improved. First, we limited the
geometry of the soma to a flat 2D square. However in reality, the soma is more or less
irregular and 3 dimensional. Second, we limited the input signal to occur all at once at t=0s.
However, it would be more realistic to allow the input to be generated at any time. We also
need to find a way to generalize the duration of channel opening rather than assuming it to be
transient. Using our model we could also try to implement a larger network with multiple
neurons interconnected.

With regard to the numerical solution, we used 2-dimensional forward finite difference
method because there was no built-in MATLAB function to directly solve our equation.
However, this forward iteration was conditionally stable and was computationally expensive
to obtain tolerable approximation. Our future work therefore includes implementing
advanced iteration algorithms, such as 2D Crank Nicholson or Alternating Direction Implicit
(ADI) method.

7. References

1. Lehninger. Principles of Biochemistry. New York, 2008. p.449-453.

2. Neuron. (2012, November 15). In Wikipedia, The Free Encyclopedia. Retrieved 22:18,
November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Neuron&oldid=523123706

3. Postsynaptic potential. (2012, November 6). In Wikipedia, The Free Encyclopedia.
Retrieved 22:19, November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Postsynaptic potential&oldid=521714565

4. Alternating direction implicit method. (2011, November 30). In Wikipedia, The Free
Encyclopedia. Retrieved 23:48, November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Alternating_direction_implicit method&oldid=4
63329248

5. Heat equation. (2012, November 9). In Wikipedia, The Free Encyclopedia. Retrieved 23:50,
November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Heat equation&oldid=522195550

6. http://humanphysiology2011.wikispaces.com/09.+Nervous+System

7. http://www.eumanagement.eu/Sehsystem/Sehen1/Kurs1c.html

&. http://en.wikipedia.org/wiki/Na%2B/K%2B-ATPase

9. http://en.wikipedia.org/wiki/Finite difference_method

8. Appendices
8.1. Appendix A: Derivation of Analytical Solution
We use separation of variable letting u(x, y, t) = X(X) Y(y) T(t).

By plugging into the PDE we get

XYT =D(X"YT + XY"T) - CXYT (1)
Rearranging

X Y 1T C

—_— = 4+ Y 4+ = = _K)

X Y DT D

Extracting ODE for X(X), we get

X"+2AX=0 3)
Rearranging (2)
Yrr 1T C
- = —— 4+ — + = _
Y DT D A H “)

Extracting ODE for Y(Yy), we get
Y'+uY=0 (5)

For ODE for T, we get

Z =Dt -C ©

By integrating both sides of (6) with respect to variable t,

-D(up+ At -Ct
(1Mt o

Tt =€ (7)

From (3) and boundary conditions for X(X)
2 0.y D=X(0)Y() T() =0-X(0) =0
2Ly, H=XL)YP) T()=0-X(L)=0
We can solve for X(X) by considering three cases where i) A =0, i1)) A <0, iii) A > 0.
i) A=0:
From (3), X” = 0, X(x) = Ax+ B. Thus X'(x) =A.
From BC, A= 0.
Thus we have X(x) =B = ay
i) A<0:
From (3), X" + AX = 0, X(x) = Ae™ +Be™, where a” = A and a>0.
Thus X’(x) = aAe™ -aBe™

From BC, A=B and X’(L) = 0 = aA(e*"-e™"
Since e*"-¢" cannot be zero given L>0, A = 0 = B which result zero solution.

i) A>0:
X(X) = Acos(ax) + Bsin(ax), where a* = A and a>0.
X’(x) = -Aa sin(ax) + Ba cos(ax).
From BC, X’'(0) = B =0 and X’(L) = -Aassin(aL) = 0.
Thus aL. = mm, m = 1,2,3.. and by setting A= «,, we get
X(X) = a,, cos (?), m=1,23..., A= (%)2
Combining 1) and iii) and by superposition principle we get
X(X) = agt ¥4 amcos(?) where A = (%)2 (8)
From (5) and by using the same procedure in solving for X(X) we get

Y(¥) = Bo+ Ty Bncos(;>) where = () ©)

combining (7), (8) and (9)
u v, 0= {ao + Zines cmcos(ED}{Bo + Zis Bucos(*))

10

exp(-D(()% () exp(-Ct)

By rearranging the terms and combining the coefficients a and (3 into Apy,

200 4152 (Arocos(™) + Agpcos(2y) exp(=D () 0) +

o exp(—Ct)
Y1 Zim=1Amncos(T)cos(-2) exp(—=D((59)* + (FHHE)

ux y, t) =

By performing double Fourier expansion with initial condition, we obtain Ay, ,
nmy
Ann= f f uo(x,y) cos()co (T) dxdy

Vi8(x)8(y —p1) + V28(x —p2)8(y) + mmx
- sz f {V38(X—L)8(y 1) + ViS(x — pa)S(y — L)}COS()cos()dxdy

4 nmp,
=—V. COS(
LZ{ 1 L

) + V, cos () + V5 cos(mm) cos () + V, cos(nm) cos (%)}

8.2. Appendix B: Derivation of 2 Dimensional Forward Finite Difference Method

2
Given the original PDE =D (71;)—Cu

rn 6x2
we first discretize each term as follows:

ou _ u(x,y, t+At) —u(x,y,t)

ot At

5 u(x +Ax,y,t) —u(x,y,t) ulx,yt) —ulx—Ax,y,t)
d°u _ Ax Ax
0x? Ax

= A—iz (u(x + Ax,y,t) — 2u(x,y,t) + ulx — Ax,y,t))

u(x,y,t)-u(x—Ax,y,t)

At the boundary where x =0, Ax =0 so
u(x + Ax,y,t) —u(x,y,t)
0’u Ax
ax? . Ax
=3 (u(x + Ax,y,t) —u(x,y,t))
At the boundary where x =L, uctixy ’At))c_u(x‘y D~ 0s0
u(x,y,t) —u(x — Ax,y,t)
0°u — Ax
0x? Ax

(—ulx,y,t) + u(x — Ax,y,t))

sz

11

Fory,

ulx,y + Ay, t) —u(x,y,t) ulx,y,t) —ulx,y—Ay,t)
d%u Ay Ay

dy? Ay
= ﬁ (uCx,y + Ay, t) — 2u(x,y, t) + u(x,y — Ay, t))

At the boundary where y = 0,

azu 1
a_yz = o2 (uCx,y + Ay, t) —u(x,y,t))
At the boundary wherey =L,
azu 1
a_yz =57 (—ulx,y,t) + u(x,y — Ay, t))
.. .. ou %u 9%u
By plugging in to the original PDE 5% PGzt 92)—Cu

u(x,y,t+At)—u(x,y,t) _
o At B
+ E{u(x,y + Ay, t) — 2u(x,y, t) + ulx,y — Ay, t)} - Culx,y,t)

%{u(x + Ax,y,t) — 2u(x,y,t) + u(x — Ax,y,t)}

By rearranging the terms, we get

u(x,y, t +At) = ulx,y, t)+ iTAzt{u(x + Ax,y,t) — 2u(x,y,t) + ulx — Ax,y,t)}
+ ETAs{u(x,y + Ay, t) — 2u(x,y,t) + ulx,y — Ay, t)} -CAtu(x,y,t)

In terms of array operation, we can express as

DAt DAt
ux,y,t+1 - Ax2 (ux+1,y,t 'Zux,y,t+ ux—l,y,t)+ Ay? (ux,y+1,t '2ux,y,t+ ux,y—l,t) -CAt ux,y,t

1

L . At
which is stable under condition: oz <3

8.3. Appendix C: MATLAB PDE Toolbox

The numerical solution to our diffusion equation was also computed using the Matlab PDE
toolbox. This toolbox has a built in graphical user interface (GUI) that uses the finite element
method to solve the partial differential equation and plot the graph over a change in time. The
PDE toolbox provides an easy solution to solving 2D PDE’s. However, it is limited in the
types of equations it is capable of solving, as we will see later.

To solve our 2D PDE, the PDE toolbox was first accessed in Matlab by typing “pdetool” into
the command window. We changed the equation to the diffusion equation by selecting it from

12

the drop down menu. The model of the soma was drawn using the rectangle tool and the
length and width were set to 1 as we defined it in our problem.

The next step was to enter in our boundary conditions for problem. Because we have flux
boundary conditions, we selected the Neumann condition type and set the flux and transfer
coefficient to be both 0. Under the PDE Specifications, the diffusion constant was changed to
0.0007 and the type selected was parabolic since our diffusion is dependent on time. For the
initial conditions we needed to come up with an equation to implement multiple delta
functions. To do this we used the notation x==value, where the value is the position along the
x-axis that the delta is to be placed. Using this notation we could then place delta functions
along specific points on the x and y axes by multiplying the two positions together.

r | A
B Solve Parameters =& ﬁ

Time:

Enspace(0,400,100)
uftd):

0.001"(x==0)."(y==0.2) - 0.002*%(x==0.7)."(y==0} + 0,005 x==1).(y==0.5) - 0.003"(x==0,6)."(y==1)

Relative tolerance

0.01

Absolute tolerance

0.001

oK | | Cancel

Figure 10. Setting the time vector and initial conditions.

The final step to finding the numerical solution was to set up the mesh for the model and
solve the equation. The mesh was first initialized and then refined to provide a uniform mesh
of smaller triangles. This refined mesh leads to a better approximation of the solution. With
the mesh in place, the PDE was then solved and visualized with the 3D graphs.

’ —
[PDE Toolbon - [Untitied] # - *e . - - [- f o (5]
File Es1 Opons Duw Boundary FDE | Mesh Sohe Plot Window Help

0| @ = E] 2| an | roe| o] o] = |) D [oenson S x -ase Y. 17
[p— F

o Enter vector of fmes 8 which fo sove FOE and il vakue u(t0) l Ext

Figure 11. Initializing and refining the mesh.

13

8.4. Appendix D: MATLAB Code

function Dendrite ()

clear;close all; clc

CcC = .004; % decaying constant for Na+/K+

D = 0.0007; % diffusivity

L =1; % length of the square

T = 400; % ending time

%inputs: one input for each sides

% x=0 v=0 x=L v=L

in = [L*0.20 L*0.70 L*0.5 L*0.6
0.001 -0.002 0.005 -0.003

mLoc = [L*0.5 L*0.5]; % monitoring location:

sSize = 20; % series precision

% grid for x, vy, t

nxStep = 20; %

nyStep = 20; %

ntStep = 2000; % change this value as

tVec = 0:T/ntStep:T;

xVec = 0:L/nxStep:L;

yVec = 0:L/nyStep:L;

nt = length(tVec) ;

nx = length(xVec) ;

ny = length(yVec);

%

mVecAn size(nt) ;
for tIdx=1:nt

ATPase

%

location
voltage

’
Q

)

1;:

center of soma

change this value as appropriate for Figure 7.
change this value as appropriate for Figure 7.

appropriate for Figure 7.

analytic solution monitoring at the center location

mVecAn (tIdx) = u(mLoc(1l),mLoc(2), tVec(tIdx), L, C, D, in, sSize);

end

%-- Experiments for Figure 6 --

% x=0 v=0 x=L v=L

epl = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
0.03 0.0 0.0 0.0 1; % voltage

ep2 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
0.03 0.03 0.0 0.0 1; % voltage

ep3 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
0.03 0.03 0.03 0.0 1; % voltage

epd = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
0.03 0.03 0.03 0.03 1; % voltage

ep3ipl = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
0.03 0.03 -0.03 0.03 1; % voltage

ip2 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
0.0 -0.03 -0.03 0.0 1; % voltage

tsval = 0.030; % threshold wvalue

for tIdx=1:nt

14

mvl (tIdx) = u(mLoc(l),mLoc(2), tVec(tIdx), L, C, D, epl, sSize);

mv2 (tIdx) = u(mLoc(l),mLoc(2), tVec(tIdx), L, C, D, ep2, sSize);

mv3 (tIdx) = u(mLoc(l),mLoc(2), tVec(tIdx), L, C, D, ep3, sSize);

mv4 (tIdx) = u(mLoc(l),mLoc(2), tVec(tIdx), L, C, D, ep4, sSize);

mvepl3ipl (tIdx) = u(mLoc(l),mLoc(2), tVec(tIdx), L, C, D, ep3ipl, sSize);
mvip2 (tIdx) = u(mLoc(l),mLoc(2), tVec(tIdx), L, C, D, ip2, sSize);
ts(tIdx) = tsVal;

end

figure (1) % comparing different number of excitatory input signal
plot (tVec,mvl, tVec,mv2, tVec,mv3, tVec,mv4, tVec, ts) ;

legend ('l EPSP','2 EPSP','3 EPSP','4d EPSP', 'Threshold');

title('Vm at the center');

ylim([-.03 0.06]);

xlabel ('Time (second)');

yvlabel ('Vm (volt)');

figure (2) % comparing excitatory vs inhibitory input signal
plot (tVec,mv4, tVec, mvep3ipl, tVec,mvip2, tVec, ts) ;

legend('4 EPSP','3 EPSP + 1 IPSP','2 IPSP', 'Threshold');
title('Vm at the center');

ylim([-.06 0.06]);

xlabel ('Time (second)');

yvlabel ('Vm (volt)');

% —-- 2D Animation for Analytic Solution --
potAn = zeros (ny, nx);
figure(3)

for tIdx=1l:nt
for xIdx=1:nx
for yIdx=1:ny
potAn (yIdx, xIdx) = u(xVec (xIdx),yVec(yIdx), tVec(tIdx), L, C, D,
in, sSize);
end
end
surf (xVec, yVec, potAn);
x1im([0,L]1);
ylim([O,L]);
zlim([-1 1
xlabel ('x")
ylabel('y');
zlabel ('voltage');
stitle('T = 400");

.51);

’

colorbar
M(tIdx) = getframe;
end
gmovie2avi (M, 'animation.avi') ;$%, 'compression', 'none') ;

%-- 2D Finite Difference Method --
POtFDM = zeros (ny, nx);
potFDM_nxt = zeros(ny, nx);
for xIdx=1:nx
for yIdx=1l:ny
POtFDM (yIdx,xIdx) = u(xVec (xIdx),yVec(yIdx), 0, L, C, D, in, sSize);
end
end

dT = T/ntStep;
dx L/nxStep;

15

dy L/nyStep;
eX = D*dT/dX"2;
eY = D*dT/dY"2;

%-- Single Monitoring Point --
mVecFDM = size(nt);
mxIdx = findIdx(xVec, mLoc(1l));

myIdx = findIdx(yVec, mLoc(2));
frameIdx = 1;

————— display of num sol monitor --------

figure(4)

for tIdx=1l:nt

if (tIdx == 20) % change this condition as appropriate for snapshot

surf (xVec, yVec, potFDM) ;
xlabel ('x");

vlabel ('y');

zlabel ('voltage') ;

title('T = 400");

x1im([0,L]) ;

ylim([O,L]);

zlim([-1 11);

colorbar

caxis([-0.001 0.001]);

M(tIdx) = getframe;

M(frameIdx) = getframe;

frameIdx = framelIdx + 1;
end

mVecFDM (tIdx) = potFDM(myIdx, mxIdx);

for xIdx=1:nx
for yIdx=1:ny

if (xIdx == 1)
xVal = potFDM(yIdx, xIdx+1l) - potFDM(yIdx, xIdx) ;
else if (xIdx == nx)
xVal = -potFDM(yIdx, xIdx) + potFDM(yIdx, xIdx-1);
else

xVal = potFDM(yIdx, xIdx+l)-2*potFDM(yIdx, xIdx) +
potFDM (yIdx, xIdx-1);

end
end
if (yIdx == 1)
vVal = potFDM(yIdx+1l, xIdx) - potFDM(yIdx, xIdx);
else if (yIdx == ny)
yVal = -potFDM(yIdx, xIdx) + potFDM(yIdx-1, xIdx);
else

yVal = potFDM(yIdx+1, xIdx)-2*potFDM(yIdx, xIdx) +
potFDM (yIdx-1, xIdx);
end
end
potFDM_nxt (yIdx,xIdx) = (1-C*dT) *potFDM(yIdx,xIdx) + eX*xVal +
eY*yVal;
end
end
POtFDM = potFDM_nxt;
end

% -- Comparing FDM vs Analytical Solution for Figure 7
figure (5)

16

plot (tVec, mVecFDM, tVec, mVecAn) ;
legend('Euler FDM', 'Analytical');
title('analytical vs numerical method') ;
xlabel ('Time (second)');

yvlabel ('Vm (volt) ') ;

yv1im([-0.003 0.0031);

end

function out = findIdx(vec, value)
nv = length(vec) ;

out = nv;

for i=l:nv-1
if(vec(i)<=value & value < vec(i+l))
out = 1i;
return;
end
end
end

function out = u(x,y,t, L, C, D, in, sSize)
out = 0;
for m=0:sSize
for n=0:sSize

tVal = exp((-C-D*(

xZ = in(2,1) cos(n

vZ = in(2,2)*cos(m*(pi/L)*in(l,Z));

xL = cos(m*pi)*in(2,3)*cos(n* (pi/L)*in(1,3));

vL = cos(n*pi)*in(2,4)*cos(m*(pi/L)*in(l,4));

(m*pi/L) "2+ (n*pi/L)"2)) *t) ;
*(pi/L) *in(1,1));

xyVal = (xZ + XL + yZ + yL)*cos(m*pi*x/L)*cos (n*pi*y/L);
if (m==0)
if (n==0)
area = L"2;
else
area = L"2/2;
end
else
if (n==0)
area = L"2/2;
else
area = L"2/4;
end
end
out = out + exp(-C*t)*xyVal*tVal/area;
end
end
end

8.5. Appendix E: MATLAB PDE Toolbox Code

function pdemodel

[pde_fig,ax]=pdeinit;

pdetool ('appl_cb',10);

set (ax, 'DataAspectRatio', [1 1 11);

set (ax, 'PlotBoxAspectRatio', [870.40000000000009 580.26666666666677
725.333333333333371) ;

17

ax, 'XLimMode', 'auto');
ax, 'YLim', [0 2]);

ax, 'XTickMode', 'auto') ;
ax, 'YTickMode', 'auto') ;

set
set
set
set

(
(
(
(

(o)

% Geometry description:
pderect ([-0 1 1 01, 'R1");

set (findobj (get (pde_£fig, 'Children'), 'Tag', 'PDEEval'), 'String', 'R1")

% Boundary conditions:
pdetool ('changemode', 0)
pdesetbd (4, ...
'neu', ...
1,...

0, ...

|0|)
pdesetbd (3, ...
'neu', ...
1,...

0, ...

|0|)
pdesetbd (2, ...
'neu', ...
1,...

0, ...

|0|)
pdesetbd (1, ...
'neu', ...
1,...

0, ...

|0|)

% Mesh generation:

setappdata (pde_fig, 'Hgrad',1.3);

setappdata (pde_fig, 'refinemethod', 'regular') ;
setappdata (pde_fig, 'jiggle',char('on', 'mean',"'"));
pdetool ('initmesh')

pdetool ('refine')

pdetool ('jiggle')

% PDE coefficients:

pdeseteg(2, ...

'.0007", ...

'0.0', ...

0, ...

'1.0', ...
'linspace(0,400,100) ", ...

' 0.001*(x==0).*(y==0.2) - 0.002*(x==0.7) .*(y==0) + 0.005*% (x==1).*(y
- 0.003*(x==0.6).*(y==1)", ...
'0.0"', ...

"[0 1001")
setappdata (pde_fig, 'currparam', ...
['.0007";...

'0 '1)

Q

% Solve parameters:
setappdata (pde_fig, 'solveparam', ...
str2mat('0','1872"','10"', 'pdeadworst"', ...

18

'0.5','longest','0','1E-4", "', 'fixed', 'Inf"'))

% Plotflags and user data strings:
setappdata (pde_fig, 'plotflags',[1 1 1111 7 01 101001 01 00 11);
setappdata (pde_fig, 'colstring','"');
setappdata (pde_fig, 'arrowstring', '"');
setappdata (pde_fig, 'deformstring','"');
setappdata (pde_fig, 'heightstring','")

7

% Solve PDE:
pdetool ('solve')

19

