
1

Modeling of Neuron Signaling from Dendrite to Axon Hillock

BENG 221 Problem Solving Report

Sung Min Kim
David Oda

Pokman Cheng

2

Table of Contents

1. Introduction…………………………………………………………………………...3

2. Problem Setup………………………………………………….……………………...3

2.1. Assumptions……………………………………………………………………....4

2.2. Differential Equation……………………………………………………………..4

3. Solution………………………………………………………………………………..5

3.1. Analytical Solution…………………………………………………………….…5

3.2. Numerical Solution: 2 Dimensional Forward Finite Difference Method……...…5

3.3. Numerical Solution: MATLAB PDE Toolbox……………………………………5

4. Results……………………...…………………………………………………………5

5. Conclusion ..…………………………………………………………………………..7

6. Future Work………………………………………………………………………...…8

7. References……………………………………………………………………………..8

8. Appendices……………………………………………………………………………9

8.1. Appendix A: Derivation of Analytical Solution…………………………………9

8.2. Appendix B: Derivation of 2 Dimensional Forward Finite Difference Method..11

8.3. Appendix C: MATLAB PDE Toolbox………………………………………….12

8.4. Appendix D: MATLAB Code…………………………………………………..14

8.5. Appendix E: MATLAB PDE Toolbox Code…………………………....……...17

1. Intro

The fun
process
typical
an axon
which t

Neuron
a presyn
postsyn
channel
potentia
certain
generat

Input si
Excitato
which r
increasi
generat
caused
the efflu
potentia
action p

The alte
input si
state by
are distr
exampl
potassiu
cell to m
compen

In this s
three dy

1.
2.
3.

2. Prob

Our goa
from th
followin

oduction

nctional unit
ses and trans
neuron con

n (Fig 1). Th
the axon ori

n signaling w
naptic axon

naptic dendr
ls certain io
al. When th
triggering t
ed and prop

ignals can e
ory signals
raises the m
ing the prob
ion at the ax
by a combin
ux of cation
al (Fig. 2B)
potential gen

ered membr
gnals can b

y various kin
ributed thro
e, Na+/K+-A
um ions in a
make the me
nsating the e

study, we m
ynamic prop

Input impu
Restoring f
Diffusion o

blem Setup

al is to find
he resting s
ng assumpt

t of the nerv
smits signal

nsists of thre
he axon hill
iginates.

works as fol
n bind to liga
rite, opening
ons flow in,
e potential a

threshold va
pagated to th

either be exc
are caused b

membrane po
bability of a
xon hillock
nation of th

ns which low
decreasing

neration.

rane potenti
be restored b
nds of ATP
oughout the
ATPase (Fig
and three so
embrane po
effect of exc

modeled the
perties:

ulse, both in
force by the
of electrical

the functio
state at loc
ions.

vous system
l via electric
ee main part
lock is the r

llow: First,
and-gated io
g the channe
get diffused
at the axon
alue, an acti
he end of ax

citatory or in
by the influ
otential (Fig
an action po
. Inhibitory

he influx of
wers membr
 the probab

ial caused b
back to its o
-driven pum
cell membr

g. 3) pumps
odium ions o
otential mor
citatory inpu

membrane

nhibitory and
e ATP-drive
l potential in

on u(x, y, t) w
ation (x,y)

3

m is a neuron
cal conduct
ts: dendrite,
region of the

neurotransm
on channels
els. Throug
d and alter m
hillock exc

ion potentia
xon.

nhibitory.
ux of cations
g. 2A),
otential
y signals are

anions and
rane

bility of

by these
original
mps which
rane. For
s two
out of the
re negative,
ut signal.

potential of

d excitatory
en pumps
n soma

which we d
of the som

n, which
tion. A
, soma, and
e soma from

mitters from
s of a

gh these
membrane

ceeds a
al is

s

Figure 2. E

Figure 3

f soma that

y, caused by

define as the
ma at time

m

m

Figure 1. S

Excitatory an

. Na+/K+ pu

accounts fo

y the openin

e amount of
t. To simp

Structure of

nd inhibitor

ump

or the follow

ng of ion ch

f potential d
plify, we m

neuron

ry input

wing

annels

deviation
made the

2.1. Ass

1.

2.

3.

4.

5.

6.

7.

8.

9.

2.2. Dif

Putting
constan

PDE:

BC:

IC: u

sumptions

The shape
enough to b

Axon is loc

Restoring p
throughout

Restoring f
the value o
expressed a

There is no
restoring p

We set the
but this num

We placed
placed on t

Diffusivity

Input impu

fferential E

all these co
nt respective

డ௨డ௧ = D (డమడ௫డ௨డ௫ (0, y, t)
 డ௨డ௫ (L, y, t

డ௨డ௬ (x, 0, t)

డ௨డ௬ (x, L, t

u0(x, y) = V

of the soma
be treated a

cated at the

pumps are d
t the membr

force is line
of u, which t
as –Cu(x, y,

o ion flux at
pumps.

maximum n
mber can be

input chann
the middle o

y (D) of elec

ulse exist on

Equation

onditions int
ely, we get

మ௨௫మ + డమ௨డ௬మ) –
) = 0

) = 0

) = 0

) = 0

1δ(x)δ(y-p1)

a is square a
as 2D plane

center of th

distributed u
rane (Fig. 4

early propor
therefore ca
 t).

t the membr

number of i
e increased

nels on the b
of the squar

ctrical poten

nly at t = 0.

to an equati

– Cu

) + V2δ(x-p

4

and flat
(Fig. 4).

he soma.

uniformly
4-yellow).

rtional to
an be

rane other th

input chann
if necessary

boundary o
re if necessa

ntial inside t

ion using D

p2)δ(y) + V3

 Figure 4

han through

nels to be 4 f
y.

f the square
ary (Fig 4-g

the cell is u

D and C as d

 Figure 5δ(x-L)δ(y-p

. Simplified

h the input c

for the ease

e (Fig 4-red)
green).

uniform.

iffusivity an

. Top view o

p3) + V4δ(x-

d model of n

channels or

e of demons

d) but it can

nd restoring

of modeled

-p4)δ(y-L)

neuron

tration

be

g force

d neuron

5

Above IC is the case where there are total of four input channels, one on each side of the
square soma (Fig. 5). Vn is positive for excitatory input signal and negative for inhibitory
input signal.

3. Solution

3.1. Analytical Solution

u(x, y, t) =ቐబ,బସ + ଵଶ ∑ ,cos(௫ܣ)) + ,cos(୷ܣ))ஶୀଵ exp(െܦ ቀ୩ ቁଶ (ݐ + ∑ ∑ ,cos(௫ܣ)cos(୬୷)ஶୀଵஶୀଵ exp(െD(()ଶ + ()ଶ)ݐ) ቑ exp(െCt)

Am,n=

ସమ ቄ ଵܸ ݏܿ ቀగభ ቁ + ଶܸ ݏܿ ቀగమ ቁ + ଷܸ (ߨ݉)ݏܿ ݏܿ ቀగయ ቁ + ସܸ (ߨ݊)ݏܿ ݏܿ ቀగర ቁቅ

See Appendix A for its derivation.

3.2. Numerical Solution: 2 Dimensional Forward Finite Difference Method
௫,௬,௧ାଵ = ∆௧∆௫మݑ ∆௧∆௬మ +(௫ିଵ,௬,௧ݑ +௫,௬,௧ݑ௫ାଵ,௬,௧ -2ݑ) ௫,௬,௧ݑ ݐ∆ C - (௫,௬ିଵ,௧ݑ +௫,௬,௧ݑ௫,௬ାଵ,௧ -2ݑ)

See Appendix B for its derivation.

3.3. Numerical Solution: MATLAB PDE Toolbox

See Appendix C for its usage.

4. Results

We used the following values for the constants in our simulation.

Table 1. Values for constants
Constant description Variable Value
Diffusivity of electrical potential in soma D 7.0*10-4 μm2/s
Restoring force constant C 4.0*10-3 s-1
Side length of soma L 1.0 μm
Input signal voltage Vn -30 ~ +30 mV

Fig. 6A shows the potential change over time at the center of soma plotted from the analytical
solution. As the number of excitatory input increases, each with the magnitude of 30 mV, the
membrane potential increases. If we take the threshold to be 30 mV, an action potential is
generated only when there are more than two excitatory input signals.

Fig. 6B
are thre
thresho
potentia

A

Figure 6

Fig. 7 s
(Fig. 7-
decreas
larger a
reasona

A

Figure 7

Fig. 8 c
t=0s to
potentia
flattene

Fig. 9 s
PDE To

 shows the
ee excitatory
ld. Therefor
al generatio

6. Analytica

hows how n
-blue line) a
ses. Compar
amount of de
able approxi

7. Comparis

compares th
t=400s with
al diffusion
ed and the m

hows the 2D
oolbox.

effect of inh
y and one in
re, the prese

on.

al solution i

numerical s
approaches t
red to 1-dim
ecrease in ∆
imation.

son of analy

he analytical
h two excita
is very sim

membrane p

D potential

hibitory inp
nhibitory inp
ence of one

in the presen

olution obta
the analytic

mensional ca∆ݔ, and ݕ∆
 B

ytical and 2

l and numer
atory and tw

milar in three
otential eve

change whe

6

puts, each w
puts, the po
 inhibitory

 B

nce of excit

ained from
cal solution
ase, the 2D ∆ݐ and thu

D finite dif

rical solutio
wo inhibitor
e solutions.
entually rest

en the soma

with the mag
otential at th
input is eno

tatory and in

2-dimensio
(Fig. 7-gree
finite differ

us more com

fference met

on in the ent
ry inputs. W
As time goe
tores its rest

a is of a circ

gnitude of 30
he center do
ough to prev

nhibitory in

nal finite di
en line) as ∆
rence metho
mputation tim

 C

thod

tire region o
We can see th

es on, the in
ting state.

cular shape

0 mV. Whe
oes not exce
vent the acti

nput signals

ifference m∆ݔ, and ݕ∆
od solution r
me to achie

of the soma
hat the patte
nitial peaks

using MAT

n there
ed the
ion

ethod ∆ݐ
requires

eve a

from
ern of
are

TLAB

t=0s

t=20s

t=100s

t=400s

Figure 8

Figure 9

5. Conc

In this s
neuron.

 PDE

8. Comparis

t=0s

9. Potential

clusion

study, we cr
. We have sh

E Toolbox

son of analy

 t

change in a

reated a mo
hown that it

ytical and n

t=20s

a soma of ci

del for mon
t successful

7

 2D FD

numerical so

 t=

ircular shap

nitoring the
lly covers th

DM

olutions for

100s

pe

electrical p
he basic fea

 Anal

the entire re

 t=4

potential in t
tures of neu

lytical Solu

egion of som

400s

the soma of
uron signali

ution

ma

f a
ing,

8

such as excitatory and inhibitory inputs as well as the restoring force caused by ATP-driven
pumps ,and the diffusion of the electrical potential over the region of the soma.

Our model is scalable in that we can increase the number of inputs at any location in the soma
by properly modifying our initial condition, u0(x,y). We can monitor the potential at any
specific location or the entire region of the soma. Also, we can predict whether the action
potential would be generated under certain conditions. In this respect, our model can serve as
a basic module to quantitatively understand complex behavior of the nervous system.

The PDE toolbox is a powerful way to solve 2D PDE’s very easily without having to worry
about setting up correct meshes when using the finite element method. However, the PDE
toolbox does have its limitations. With the PDE toolbox we are not able to modify the
equation to include a restoring force. This means that over time if enough excitatory
potentials were fired, we would see an accumulation of voltage that wouldn’t normally occur.
While the PDE toolbox does provide a great deal of simplicity, it can also lead to inaccurate
solutions depending on what needs to be modeled.

6. Future Work

To build a more realistic model, there are several things to be improved. First, we limited the
geometry of the soma to a flat 2D square. However in reality, the soma is more or less
irregular and 3 dimensional. Second, we limited the input signal to occur all at once at t=0s.
However, it would be more realistic to allow the input to be generated at any time. We also
need to find a way to generalize the duration of channel opening rather than assuming it to be
transient. Using our model we could also try to implement a larger network with multiple
neurons interconnected.

With regard to the numerical solution, we used 2-dimensional forward finite difference
method because there was no built-in MATLAB function to directly solve our equation.
However, this forward iteration was conditionally stable and was computationally expensive
to obtain tolerable approximation. Our future work therefore includes implementing
advanced iteration algorithms, such as 2D Crank Nicholson or Alternating Direction Implicit
(ADI) method.

7. References

1. Lehninger. Principles of Biochemistry. New York, 2008. p.449-453.

2. Neuron. (2012, November 15). In Wikipedia, The Free Encyclopedia. Retrieved 22:18,

November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Neuron&oldid=523123706

9

3. Postsynaptic potential. (2012, November 6). In Wikipedia, The Free Encyclopedia.
Retrieved 22:19, November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Postsynaptic_potential&oldid=521714565

4. Alternating direction implicit method. (2011, November 30). In Wikipedia, The Free

Encyclopedia. Retrieved 23:48, November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Alternating_direction_implicit_method&oldid=4
63329248

5. Heat equation. (2012, November 9). In Wikipedia, The Free Encyclopedia. Retrieved 23:50,

November 15, 2012, from
http://en.wikipedia.org/w/index.php?title=Heat_equation&oldid=522195550

6. http://humanphysiology2011.wikispaces.com/09.+Nervous+System

7. http://www.eumanagement.eu/Sehsystem/Sehen1/Kurs1c.html

8. http://en.wikipedia.org/wiki/Na%2B/K%2B-ATPase

9. http://en.wikipedia.org/wiki/Finite_difference_method

8. Appendices

8.1. Appendix A: Derivation of Analytical Solution

We use separation of variable letting u(x, y, t) = X(x) Y(y) T(t).

By plugging into the PDE we get
 XYT’ = D(X’’YT + XY’’T) – CXYT (1)
Rearranging ᇱᇱ = - ᇱᇱ + ଵ ்ᇱᇱ் + = -λ (2)
Extracting ODE for X(x), we get
 X’’ + λX = 0 (3)
Rearranging (2)
 ᇱᇱ = ଵ ்ᇱᇱ் + + λ = -μ (4)

Extracting ODE for Y(y), we get

 Y’’ + μY = 0 (5)

For ODE for T, we get

10

்ᇱ் = -D (μ + λ) – C (6)

By integrating both sides of (6) with respect to variable t,

T(t) = e-D(μ + λ)t e-Ct (7)

From (3) and boundary conditions for X(x)
 డ௨డ௫ (0, y, t) = X’(0) Y(y) T(t) = 0 → X’(0) = 0
 డ௨డ௫ (L, y, t) = X’(L) Y(y) T(t) = 0 → X’(L) = 0

We can solve for X(x) by considering three cases where i) λ = 0, ii) λ < 0, iii) λ > 0.

i) λ = 0 :

From (3), X’’ = 0, X(x) = Ax + B. Thus X’(x) =A.
From BC, A = 0.

 Thus we have X(x) = B = α0

ii) λ < 0:
From (3), X’’ + λX = 0, X(x) = Aeax +Be-ax, where a2 = λ and a>0.
Thus X’(x) = aAeax -aBe-ax

 From BC, A=B and X’(L) = 0 = aA(eaL-e-aL)
 Since eaL-e-aL cannot be zero given L>0, A = 0 = B which result zero solution.

iii) λ > 0:

X(x) = Acos(ax) + Bsin(ax), where a2 = λ and a>0.
X’(x) = -Aa sin(ax) + Ba cos(ax).
From BC, X’(0) = B = 0 and X’(L) = -Aa sin(aL) = 0.
Thus aL = mπ, m = 1,2,3.. and by setting A = α we get
X(x) = α cos ቀ௫ ቁ, m = 1,2,3…, λ = ()ଶ

Combining i) and iii) and by superposition principle we get

X(x) = α0+ ∑ αcos(௫)ஶୀଵ where λ = ()ଶ (8)

From (5) and by using the same procedure in solving for X(x) we get

Y(y) = β0+ ∑ βcos (௬)ஶୀଵ where μ = ()ଶ (9)

combining (7), (8) and (9)

u(x, y, t) = ቄα + ∑ αcos (௫)ஶୀଵ ቅ ቄβ + ∑ βcos (௬)ஶୀଵ ቅ

11

exp(-D(()ଶ
+ ()ଶ)t) exp(-Ct)

By rearranging the terms and combining the coefficients α and β into Am,n

u(x, y, t) =ቐబ,బସ + ଵଶ ∑ ,cos(௫ܣ)) + ,cos(୷ܣ))ஶୀଵ exp(െܦ ቀ୩ ቁଶ (ݐ + ∑ ∑ ,cos(௫ܣ)cos(୬୷)ஶୀଵஶୀଵ exp(െD(()ଶ + ()ଶ)ݐ) ቑ exp(െCt)

By performing double Fourier expansion with initial condition, we obtain Am,n

Am,n = ସమ ,ݔ)ݑ (ݕ cos ቀ௫ ቁ cos ቀగ௬ ቁ ݕ݀ݔ݀

 = ସమ ቊ ଵܸδ(ݔ)δ(ݕ െ (ଵ + ଶܸδ(ݔ െ (ݕ)ଶ)δ + ଷܸδ(x െ L)δ(y െ (ଷ + ସܸδ(x െ ସ)δ(y െ L) ቋ cos ቀ௫ ቁ cos ቀగ௬ ቁ dxdy

= ସమ ቄ ଵܸ ݏܿ ቀగభ ቁ + ଶܸ ݏܿ ቀగమ ቁ + ଷܸ (ߨ݉)ݏܿ ݏܿ ቀగయ ቁ + ସܸ (ߨ݊)ݏܿ ݏܿ ቀగర ቁቅ

8.2. Appendix B: Derivation of 2 Dimensional Forward Finite Difference Method

Given the original PDE, డ௨డ௧ = D (డమ௨డ௫మ + డమ௨డ௬మ) – Cu

we first discretize each term as follows:
ݐݑ߲߲ = u(ݔ, ,ݕ ݐ + (ݐ∆ െ ,ݔ)ݑ ,ݕ ݐ∆(ݐ
 ߲ଶݔ߲ݑଶ = u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ ,ݕ ݔ∆(ݐ െ u(ݔ, ,ݕ (ݐ െ ݔ)ݑ െ ,ݔ∆ ,ݕ ݔ∆ݔ∆(ݐ

 = ଵ∆௫మ (u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ ((ݐ

At the boundary where x = 0, ୳(௫,௬,௧)ି௨(௫ି∆௫,௬,௧)∆௫ = 0 so ߲ଶݔ߲ݑଶ = u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ ,ݕ ݔ∆ݔ∆(ݐ

= ଵ∆௫మ (u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ ,ݕ ((ݐ

At the boundary where x = L, ୳(௫ା∆௫,௬,௧)ି௨(௫,௬,௧)∆௫ = 0 so ߲ଶݔ߲ݑଶ = െ u(ݔ, ,ݕ (ݐ െ ݔ)ݑ െ ,ݔ∆ ,ݕ ݔ∆ݔ∆(ݐ

 = ଵ∆௫మ (െݔ)ݑ, ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ ((ݐ

12

For y, ߲ଶݕ߲ݑଶ = u(ݔ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ ,ݕ ݕ∆(ݐ െ u(ݔ, ,ݕ (ݐ െ ,ݔ)ݑ ݕ െ ,ݕ∆ ݕ∆ݕ∆(ݐ

= ଵ∆௬మ (u(ݔ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆ ((ݐ

At the boundary where y = 0, డమ௨డ௬మ = ଵ∆௬మ (u(ݔ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ ,ݕ ((ݐ

At the boundary where y = L, డమ௨డ௬మ = ଵ∆௬మ (െݔ)ݑ, ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆ ((ݐ

By plugging in to the original PDE డ௨డ௧ = D (డమ௨డ௫మ + డమ௨డ௬మ) – Cu
 ௨(௫,௬,௧ା∆௧)ି௨(௫,௬,௧)∆௧ = ∆௫మ ሼݔ)ݑ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ ሽ(ݐ

 + ∆௬మ ሼݔ)ݑ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆ ,ݔ)ݑሽ - C(ݐ ,ݕ (ݐ

By rearranging the terms, we get
,ݔ)ݑ ,ݕ ݐ + ,ݔ)ݑ = (ݐ∆ ,ݕ ∆௧∆௫మ +(ݐ ሼݔ)ݑ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ {(ݐ

+ ∆௧∆௬మ ሼݔ)ݑ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆ ,ݔ)ݑ ݐ∆ ሽ - C(ݐ ,ݕ (ݐ

In terms of array operation, we can express as
௫,௬,௧ାଵ = ∆௧∆௫మݑ ∆௧∆௬మ +(௫ିଵ,௬,௧ݑ +௫,௬,௧ݑ௫ାଵ,௬,௧ -2ݑ) ௫,௬,௧ݑ ݐ∆ C - (௫,௬ିଵ,௧ݑ +௫,௬,௧ݑ௫,௬ାଵ,௧ -2ݑ)

which is stable under condition: ∆௧∆௫మ < ଵସ

8.3. Appendix C: MATLAB PDE Toolbox

The numerical solution to our diffusion equation was also computed using the Matlab PDE
toolbox. This toolbox has a built in graphical user interface (GUI) that uses the finite element
method to solve the partial differential equation and plot the graph over a change in time. The
PDE toolbox provides an easy solution to solving 2D PDE’s. However, it is limited in the
types of equations it is capable of solving, as we will see later.

To solve our 2D PDE, the PDE toolbox was first accessed in Matlab by typing “pdetool” into
the command window. We changed the equation to the diffusion equation by selecting it from

the drop
length a

The nex
boundar
coeffici
0.0007
initial c
function
x-axis t
along sp

The fina
solve th
of smal
the mes

p down men
and width w

xt step was
ry condition
ient to be bo
and the typ

conditions w
ns. To do th
that the delt
pecific poin

al step to fin
he equation.
ler triangles

sh in place,

nu. The mod
were set to 1

to enter in o
ns, we selec
oth 0. Unde
e selected w

we needed to
his we used
a is to be pl

nts on the x

Figure 10.

nding the nu
. The mesh
s. This refin
the PDE wa

Figur

del of the so
1 as we defin

our boundar
cted the Neu
r the PDE S

was parabol
o come up w
the notation
laced. Using
and y axes

Setting the

umerical so
was first ini

ned mesh le
as then solv

re 11. Initial

13

oma was dr
ned it in ou

ry condition
umann cond
Specificatio
lic since our
with an equ
n x==value,
g this notati
by multiply

time vector

olution was
itialized and
ads to a bet

ved and visu

lizing and r

awn using t
ur problem.

ns for proble
dition type a
ns, the diffu
r diffusion i
ation to imp
, where the
ion we coul
ying the two

r and initial

to set up th
d then refin
tter approxim
ualized with

efining the

the rectangl

em. Becaus
and set the f
usion consta
s dependent
plement mu
value is the
d then place

o positions t

conditions.

e mesh for t
ed to provid
mation of th

h the 3D gra

mesh.

le tool and t

se we have f
flux and tra
ant was cha

nt on time. F
ultiple delta
e position al
e delta func
together.

.

the model a
de a uniform
he solution.
aphs.

the

flux
ansfer
anged to
For the

long the
ctions

and
m mesh
 With

14

8.4. Appendix D: MATLAB Code

function Dendrite()
clear;close all; clc

C = .004; % decaying constant for Na+/K+ ATPase
D = 0.0007; % diffusivity
L = 1; % length of the square
T = 400; % ending time

%inputs: one input for each sides
% x=0 y=0 x=L y=L
in = [L*0.20 L*0.70 L*0.5 L*0.6 ; % location
 0.001 -0.002 0.005 -0.003]; % voltage

mLoc = [L*0.5 L*0.5]; % monitoring location: center of soma
sSize = 20; % series precision

% grid for x, y, t
nxStep = 20; % change this value as appropriate for Figure 7.
nyStep = 20; % change this value as appropriate for Figure 7.
ntStep = 2000; % change this value as appropriate for Figure 7.

tVec = 0:T/ntStep:T;
xVec = 0:L/nxStep:L;
yVec = 0:L/nyStep:L;

nt = length(tVec);
nx = length(xVec);
ny = length(yVec);

% analytic solution monitoring at the center location
mVecAn = size(nt);
for tIdx=1:nt
 mVecAn(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, in, sSize);
end

%-- Experiments for Figure 6 --
% x=0 y=0 x=L y=L
ep1 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
 0.03 0.0 0.0 0.0]; % voltage
ep2 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
 0.03 0.03 0.0 0.0]; % voltage
ep3 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
 0.03 0.03 0.03 0.0]; % voltage
ep4 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
 0.03 0.03 0.03 0.03]; % voltage

ep3ip1 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
 0.03 0.03 -0.03 0.03]; % voltage
ip2 = [L*0.20 L*0.70 L*0.5 L*0.9 ; % location
 0.0 -0.03 -0.03 0.0]; % voltage

tsVal = 0.030; % threshold value

for tIdx=1:nt

15

 mv1(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep1, sSize);
 mv2(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep2, sSize);
 mv3(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep3, sSize);
 mv4(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep4, sSize);
 mvep3ip1(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep3ip1, sSize);
 mvip2(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ip2, sSize);
 ts(tIdx) = tsVal;
end
figure (1) % comparing different number of excitatory input signal
plot(tVec,mv1,tVec,mv2,tVec,mv3,tVec,mv4,tVec,ts);
legend('1 EPSP','2 EPSP','3 EPSP','4 EPSP','Threshold');
title('Vm at the center');
ylim([-.03 0.06]);
xlabel('Time (second)');
ylabel('Vm (volt)');

figure (2) % comparing excitatory vs inhibitory input signal
plot(tVec,mv4,tVec,mvep3ip1,tVec,mvip2,tVec,ts);
legend('4 EPSP','3 EPSP + 1 IPSP','2 IPSP','Threshold');
title('Vm at the center');
ylim([-.06 0.06]);
xlabel('Time (second)');
ylabel('Vm (volt)');

% -- 2D Animation for Analytic Solution --
 potAn = zeros (ny, nx);
 figure(3)
 for tIdx=1:nt
 for xIdx=1:nx
 for yIdx=1:ny
 potAn(yIdx, xIdx) = u(xVec(xIdx),yVec(yIdx), tVec(tIdx), L, C, D,
in, sSize);
 end
 end
 surf(xVec, yVec, potAn);
 xlim([0,L]);
 ylim([0,L]);
 %zlim([-1 1.5]);
 xlabel('x');
 ylabel('y');
 zlabel('voltage');
 %title('T = 400');
 colorbar
 M(tIdx) = getframe;
end
%movie2avi(M,'animation.avi');%,'compression','none');

%-- 2D Finite Difference Method --
potFDM = zeros (ny, nx);
potFDM_nxt = zeros(ny, nx);
for xIdx=1:nx
 for yIdx=1:ny
 potFDM(yIdx,xIdx) = u(xVec(xIdx),yVec(yIdx), 0, L, C, D, in, sSize);
 end
end

dT = T/ntStep;
dX = L/nxStep;

16

dY = L/nyStep;
eX = D*dT/dX^2;
eY = D*dT/dY^2;

%-- Single Monitoring Point --
mVecFDM = size(nt);
mxIdx = findIdx(xVec, mLoc(1));
myIdx = findIdx(yVec, mLoc(2));
frameIdx = 1;
%----- display of num sol monitor --------
figure(4)
for tIdx=1:nt
if (tIdx == 20) % change this condition as appropriate for snapshot
 surf(xVec, yVec, potFDM);
 xlabel('x');
 ylabel('y');
 zlabel('voltage');
 title('T = 400');
 xlim([0,L]);
 ylim([0,L]);
 zlim([-1 1]);
 colorbar
 caxis([-0.001 0.001]);
 M(tIdx) = getframe;
 M(frameIdx) = getframe;
 frameIdx = frameIdx + 1;
end
 mVecFDM(tIdx) = potFDM(myIdx, mxIdx);
 for xIdx=1:nx
 for yIdx=1:ny
 if (xIdx == 1)
 xVal = potFDM(yIdx, xIdx+1) - potFDM(yIdx, xIdx);
 else if (xIdx == nx)
 xVal = -potFDM(yIdx, xIdx) + potFDM(yIdx, xIdx-1);
 else
 xVal = potFDM(yIdx, xIdx+1)-2*potFDM(yIdx, xIdx) +
potFDM(yIdx, xIdx-1);
 end
 end

 if (yIdx == 1)
 yVal = potFDM(yIdx+1, xIdx) - potFDM(yIdx, xIdx);
 else if (yIdx == ny)
 yVal = -potFDM(yIdx, xIdx) + potFDM(yIdx-1, xIdx);
 else
 yVal = potFDM(yIdx+1, xIdx)-2*potFDM(yIdx, xIdx) +
potFDM(yIdx-1, xIdx);
 end
 end
 potFDM_nxt(yIdx,xIdx) = (1-C*dT)*potFDM(yIdx,xIdx) + eX*xVal +
eY*yVal;
 end
 end
 potFDM = potFDM_nxt;
end

% -- Comparing FDM vs Analytical Solution for Figure 7
figure (5)

17

plot(tVec, mVecFDM, tVec, mVecAn);
legend('Euler FDM','Analytical');
title('analytical vs numerical method');
xlabel('Time (second)');
ylabel('Vm (volt)');
ylim([-0.003 0.003]);

end

function out = findIdx(vec, value)
nv = length(vec);
out = nv;
for i=1:nv-1
 if(vec(i)<=value & value < vec(i+1))
 out = i;
 return;
 end
end
end

function out = u(x,y,t, L, C, D, in, sSize)
out = 0;
for m=0:sSize
 for n=0:sSize
 tVal = exp((-C-D*((m*pi/L)^2+(n*pi/L)^2))*t);
 xZ = in(2,1)*cos(n*(pi/L)*in(1,1));
 yZ = in(2,2)*cos(m*(pi/L)*in(1,2));
 xL = cos(m*pi)*in(2,3)*cos(n*(pi/L)*in(1,3));
 yL = cos(n*pi)*in(2,4)*cos(m*(pi/L)*in(1,4));
 xyVal = (xZ + xL + yZ + yL)*cos(m*pi*x/L)*cos(n*pi*y/L);
 if (m==0)
 if (n==0)
 area = L^2;
 else
 area = L^2/2;
 end
 else
 if (n==0)
 area = L^2/2;
 else
 area = L^2/4;
 end
 end
 out = out + exp(-C*t)*xyVal*tVal/area;
 end
end
end

8.5. Appendix E: MATLAB PDE Toolbox Code

function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',10);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[870.40000000000009 580.26666666666677
725.33333333333337]);

18

set(ax,'XLimMode','auto');
set(ax,'YLim',[0 2]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');

% Geometry description:
pderect([-0 1 1 0],'R1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1')

% Boundary conditions:
pdetool('changemode',0)
pdesetbd(4,...
'neu',...
1,...
'0',...
'0')
pdesetbd(3,...
'neu',...
1,...
'0',...
'0')
pdesetbd(2,...
'neu',...
1,...
'0',...
'0')
pdesetbd(1,...
'neu',...
1,...
'0',...
'0')

% Mesh generation:
setappdata(pde_fig,'Hgrad',1.3);
setappdata(pde_fig,'refinemethod','regular');
setappdata(pde_fig,'jiggle',char('on','mean',''));
pdetool('initmesh')
pdetool('refine')
pdetool('jiggle')

% PDE coefficients:
pdeseteq(2,...
'.0007',...
'0.0',...
'0',...
'1.0',...
'linspace(0,400,100)',...
' 0.001*(x==0).*(y==0.2) - 0.002*(x==0.7).*(y==0) + 0.005*(x==1).*(y==0.5)
- 0.003*(x==0.6).*(y==1)',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['.0007';...
'0 '])

% Solve parameters:
setappdata(pde_fig,'solveparam',...
str2mat('0','1872','10','pdeadworst',...

19

'0.5','longest','0','1E-4','','fixed','Inf'))

% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 7 0 1 1 0 100 1 0 1 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');

% Solve PDE:
pdetool('solve')

