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Above IC is the case where there are total of four input channels, one on each side of the 
square soma (Fig. 5). Vn is positive for excitatory input signal and negative for inhibitory 
input signal. 
 
 
 
3. Solution 
 
3.1. Analytical Solution 
 

u(x, y, t) =ቐ஺బ,బସ + ଵଶ ∑ ௞,଴cos(௞஠௫௅ܣ) ) + ଴,௞cos(௞஠୷௅ܣ  ))ஶ௞ୀଵ exp(െܦ ቀ୩஠௅ ቁଶ (ݐ +  ∑ ∑ ௠,௡cos(௠஠௫௅ܣ )cos(୬஠୷௅ )ஶ௠ୀଵஶ௠ୀଵ  exp(െD((௠஠௅ )ଶ +  (௡஠௅ )ଶ)ݐ) ቑ exp(െCt) 

 
Am,n=

ସ௅మ ቄ ଵܸ ݏ݋ܿ ቀ௡గ௣భ௅ ቁ + ଶܸ ݏ݋ܿ ቀ௠గ௣మ௅ ቁ + ଷܸ (ߨ݉)ݏ݋ܿ ݏ݋ܿ ቀ௡గ௣య௅ ቁ + ସܸ (ߨ݊)ݏ݋ܿ ݏ݋ܿ ቀ௠గ௣ర௅ ቁቅ 
 
See Appendix A for its derivation. 
 
 
3.2. Numerical Solution: 2 Dimensional Forward Finite Difference Method 
௫,௬,௧ାଵ = ஽∆௧∆௫మݑ  ஽∆௧∆௬మ +(௫ିଵ,௬,௧ݑ +௫,௬,௧ݑ௫ାଵ,௬,௧ -2ݑ)    ௫,௬,௧ݑ ݐ∆ C - (௫,௬ିଵ,௧ݑ +௫,௬,௧ݑ௫,௬ାଵ,௧ -2ݑ) 
 
See Appendix B for its derivation. 
 
 
3.3. Numerical Solution: MATLAB PDE Toolbox 
 
See Appendix C for its usage. 
 
 
 
4. Results 
 
We used the following values for the constants in our simulation. 
 
Table 1. Values for constants 
Constant description Variable Value 
Diffusivity of electrical potential in soma D 7.0*10-4    μm2/s 
Restoring force constant C 4.0*10-3    s-1 
Side length of soma L 1.0        μm 
Input signal voltage Vn -30 ~ +30   mV 

 
Fig. 6A shows the potential change over time at the center of soma plotted from the analytical 
solution. As the number of excitatory input increases, each with the magnitude of 30 mV, the 
membrane potential increases. If we take the threshold to be 30 mV, an action potential is 
generated only when there are more than two excitatory input signals. 
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such as excitatory and inhibitory inputs as well as the restoring force caused by ATP-driven 
pumps ,and the diffusion of the electrical potential over the region of the soma. 
 
Our model is scalable in that we can increase the number of inputs at any location in the soma 
by properly modifying our initial condition, u0(x,y). We can monitor the potential at any 
specific location or the entire region of the soma. Also, we can predict whether the action 
potential would be generated under certain conditions. In this respect, our model can serve as 
a basic module to quantitatively understand complex behavior of the nervous system. 
 
The PDE toolbox is a powerful way to solve 2D PDE’s very easily without having to worry 
about setting up correct meshes when using the finite element method. However, the PDE 
toolbox does have its limitations. With the PDE toolbox we are not able to modify the 
equation to include a restoring force. This means that over time if enough excitatory 
potentials were fired, we would see an accumulation of voltage that wouldn’t normally occur. 
While the PDE toolbox does provide a great deal of simplicity, it can also lead to inaccurate 
solutions depending on what needs to be modeled.  
 
 
 
6. Future Work 
 
To build a more realistic model, there are several things to be improved. First, we limited the 
geometry of the soma to a flat 2D square. However in reality, the soma is more or less 
irregular and 3 dimensional. Second, we limited the input signal to occur all at once at t=0s. 
However, it would be more realistic to allow the input to be generated at any time. We also 
need to find a way to generalize the duration of channel opening rather than assuming it to be 
transient. Using our model we could also try to implement a larger network with multiple 
neurons interconnected. 
 
With regard to the numerical solution, we used 2-dimensional forward finite difference 
method because there was no built-in MATLAB function to directly solve our equation. 
However, this forward iteration was conditionally stable and was computationally expensive 
to obtain tolerable approximation. Our future work therefore includes implementing 
advanced iteration algorithms, such as 2D Crank Nicholson or Alternating Direction Implicit 
(ADI) method. 
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8. Appendices 
 
8.1. Appendix A: Derivation of Analytical Solution 
 
We use separation of variable letting u(x, y, t) = X(x) Y(y) T(t). 
 
By plugging into the PDE we get 
 XYT’ = D(X’’YT + XY’’T) – CXYT  (1) 
Rearranging ௑ᇱᇱ௑  = - ௒ᇱᇱ௒  + ଵ஽ ்ᇱᇱ்  + ஼஽ = -λ  (2) 
Extracting ODE for X(x), we get 
 X’’ + λX = 0                         (3) 
Rearranging (2) 
 ௒ᇱᇱ௒  = ଵ஽ ்ᇱᇱ்  + ஼஽ + λ = -μ  (4) 
 
Extracting ODE for Y(y), we get 

 Y’’ + μY = 0     (5) 
 
For ODE for T, we get 
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்ᇱ் = -D (μ + λ) – C    (6) 
 
By integrating both sides of (6) with respect to variable t, 
 

T(t) = e-D(μ + λ)t e-Ct    (7) 
 
From (3) and boundary conditions for X(x) 
 డ௨డ௫ (0, y, t) = X’(0) Y(y) T(t) = 0 → X’(0) = 0 
 డ௨డ௫ (L, y, t) = X’(L) Y(y) T(t) = 0 → X’(L) = 0 
 
We can solve for X(x) by considering three cases where i) λ = 0, ii) λ < 0, iii) λ > 0. 

 
i) λ = 0 : 

From (3), X’’ = 0, X(x) = Ax + B. Thus X’(x) =A. 
From BC, A = 0. 

 Thus we have X(x) = B = α0 
 

ii) λ < 0:  
From (3), X’’ + λX = 0, X(x) = Aeax +Be-ax, where a2 = λ and a>0. 
Thus X’(x) = aAeax -aBe-ax 

 From BC, A=B and X’(L) = 0 = aA(eaL-e-aL) 
 Since eaL-e-aL cannot be zero given L>0, A = 0 = B which result zero solution. 

    
iii) λ > 0: 

X(x) = Acos(ax) + Bsin(ax), where a2 = λ and a>0. 
X’(x) = -Aa sin(ax) + Ba cos(ax). 
From BC, X’(0) = B = 0 and X’(L) = -Aa sin(aL) = 0. 
Thus aL = mπ, m = 1,2,3.. and by setting A = α௠ we get 
X(x) = α௠ cos ቀ௠஠௫௅ ቁ, m = 1,2,3…, λ = (௠஠௅ )ଶ 

 
Combining i) and iii) and by superposition principle we get 
 
X(x) = α0+ ∑ α௠cos(௠஠௫௅ )ஶ௠ୀଵ  where λ = (௠஠௅ )ଶ    (8) 
 
From (5) and by using the same procedure in solving for X(x) we get 
 
Y(y) = β0+ ∑ β௡cos (௡஠௬௅ )ஶ௡ୀଵ  where μ = (௡஠௅ )ଶ   (9) 
 
combining (7), (8) and (9) 
 
u(x, y, t) = ቄα଴ +  ∑ α௠cos (௠஠௫௅ )ஶ௠ୀଵ ቅ ቄβ଴ +  ∑ β௡cos (௡஠௬௅ )ஶ௡ୀଵ ቅ 
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exp(-D((௠஠௅ )ଶ
+ (௡஠௅ )ଶ)t) exp(-Ct) 

 
By rearranging the terms and combining the coefficients α and β into Am,n 
 

u(x, y, t) =ቐ஺బ,బସ + ଵଶ ∑ ௞,଴cos(௞஠௫௅ܣ) ) + ଴,௞cos(௞஠୷௅ܣ  ))ஶ௞ୀଵ exp(െܦ ቀ୩஠௅ ቁଶ (ݐ +  ∑ ∑ ௠,௡cos(௠஠௫௅ܣ )cos(୬஠୷௅ )ஶ௠ୀଵஶ௠ୀଵ  exp(െD((௠஠௅ )ଶ +  (௡஠௅ )ଶ)ݐ) ቑ exp(െCt) 

 
By performing double Fourier expansion with initial condition, we obtain Am,n 
 
Am,n = ସ௅మ ׬ ׬ ,ݔ)଴ݑ ௅଴௅଴(ݕ cos ቀ௠஠௫௅ ቁ cos ቀ௡గ௬௅ ቁ  ݕ݀ݔ݀
  

   = ସ௅మ ׬ ׬ ቊ ଵܸδ(ݔ)δ(ݕ െ (ଵ݌  +  ଶܸδ(ݔ െ (ݕ)ଶ)δ݌  + ଷܸδ(x െ L)δ(y െ (ଷ݌  +  ସܸδ(x െ ସ)δ(y݌ െ L) ቋ௅଴௅଴  cos ቀ௠஠௫௅ ቁ cos ቀ௡గ௬௅ ቁ dxdy 

    
= ସ௅మ ቄ ଵܸ ݏ݋ܿ ቀ௡గ௣భ௅ ቁ + ଶܸ ݏ݋ܿ ቀ௠గ௣మ௅ ቁ + ଷܸ (ߨ݉)ݏ݋ܿ ݏ݋ܿ ቀ௡గ௣య௅ ቁ + ସܸ (ߨ݊)ݏ݋ܿ ݏ݋ܿ ቀ௠గ௣ర௅ ቁቅ 
 
 
8.2. Appendix B: Derivation of 2 Dimensional Forward Finite Difference Method 
 
Given the original PDE, డ௨డ௧  = D (డమ௨డ௫మ + డమ௨డ௬మ  ) – Cu 
 
we first discretize each term as follows: 
ݐݑ߲߲  =  u(ݔ, ,ݕ ݐ + (ݐ∆ െ ,ݔ)ݑ ,ݕ ݐ∆(ݐ  
 ߲ଶݔ߲ݑଶ = u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ ,ݕ ݔ∆(ݐ െ u(ݔ, ,ݕ (ݐ െ ݔ)ݑ െ ,ݔ∆ ,ݕ ݔ∆ݔ∆(ݐ  

    = ଵ∆௫మ  (u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ   ((ݐ
 
At the boundary where x = 0, ୳(௫,௬,௧)ି௨(௫ି∆௫,௬,௧)∆௫ = 0 so  ߲ଶݔ߲ݑଶ = u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ ,ݕ ݔ∆ݔ∆(ݐ  

= ଵ∆௫మ  (u(ݔ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ ,ݕ  ((ݐ
 
At the boundary where x = L, ୳(௫ା∆௫,௬,௧)ି௨(௫,௬,௧)∆௫  = 0 so ߲ଶݔ߲ݑଶ = െ u(ݔ, ,ݕ (ݐ െ ݔ)ݑ െ ,ݔ∆ ,ݕ ݔ∆ݔ∆(ݐ  

   = ଵ∆௫మ  (െݔ)ݑ, ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ   ((ݐ
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For y, ߲ଶݕ߲ݑଶ = u(ݔ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ ,ݕ ݕ∆(ݐ െ u(ݔ, ,ݕ (ݐ െ ,ݔ)ݑ ݕ െ ,ݕ∆ ݕ∆ݕ∆(ݐ   

= ଵ∆௬మ  (u(ݔ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆  ((ݐ
 
At the boundary where y = 0, డమ௨డ௬మ = ଵ∆௬మ  (u(ݔ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ ,ݕ  ((ݐ

 
At the boundary where y = L, డమ௨డ௬మ = ଵ∆௬మ  (െݔ)ݑ, ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆  ((ݐ

 
By plugging in to the original PDE డ௨డ௧  = D (డమ௨డ௫మ + డమ௨డ௬మ  ) – Cu 
 ௨(௫,௬,௧ା∆௧)ି௨(௫,௬,௧)∆௧  = ஽∆௫మ ሼݔ)ݑ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ  ሽ(ݐ

 + ஽∆௬మ ሼݔ)ݑ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆ ,ݔ)ݑሽ - C(ݐ ,ݕ  (ݐ
 
By rearranging the terms, we get 
,ݔ)ݑ  ,ݕ ݐ + ,ݔ)ݑ  = (ݐ∆ ,ݕ ஽∆௧∆௫మ +(ݐ ሼݔ)ݑ + ,ݔ∆ ,ݕ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ݔ)ݑ + െ ,ݔ∆ ,ݕ  {(ݐ

+ ஽∆௧∆௬మ ሼݔ)ݑ, ݕ + ,ݕ∆ (ݐ െ ,ݔ)ݑ2 ,ݕ (ݐ ,ݔ)ݑ + ݕ െ ,ݕ∆ ,ݔ)ݑ ݐ∆ ሽ - C(ݐ ,ݕ  (ݐ
 
In terms of array operation, we can express as 
௫,௬,௧ାଵ = ஽∆௧∆௫మݑ  ஽∆௧∆௬మ +(௫ିଵ,௬,௧ݑ +௫,௬,௧ݑ௫ାଵ,௬,௧ -2ݑ)    ௫,௬,௧ݑ ݐ∆ C - (௫,௬ିଵ,௧ݑ +௫,௬,௧ݑ௫,௬ାଵ,௧ -2ݑ) 
 
which is stable under condition: ∆௧∆௫మ < ଵସ 
 
 
8.3. Appendix C: MATLAB PDE Toolbox 
 
The numerical solution to our diffusion equation was also computed using the Matlab PDE 
toolbox. This toolbox has a built in graphical user interface (GUI) that uses the finite element 
method to solve the partial differential equation and plot the graph over a change in time. The 
PDE toolbox provides an easy solution to solving 2D PDE’s. However, it is limited in the 
types of equations it is capable of solving, as we will see later.  
 
To solve our 2D PDE, the PDE toolbox was first accessed in Matlab by typing “pdetool” into 
the command window. We changed the equation to the diffusion equation by selecting it from 
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8.4. Appendix D: MATLAB Code 
 
function Dendrite() 
clear;close all; clc 
  
C = .004;       % decaying constant for Na+/K+ ATPase 
D = 0.0007;     % diffusivity 
L = 1;          % length of the square 
T = 400;        % ending time 
  
%inputs: one input for each sides 
%       x=0         y=0         x=L         y=L 
in = [  L*0.20      L*0.70      L*0.5       L*0.6    ;  % location 
        0.001      -0.002       0.005      -0.003 ];   % voltage 
  
mLoc = [L*0.5 L*0.5];   % monitoring location: center of soma 
sSize = 20;             % series precision 
  
% grid for x, y, t 
nxStep = 20;            % change this value as appropriate for Figure 7. 
nyStep = 20;            % change this value as appropriate for Figure 7. 
ntStep = 2000;          % change this value as appropriate for Figure 7. 
  
tVec = 0:T/ntStep:T; 
xVec = 0:L/nxStep:L; 
yVec = 0:L/nyStep:L; 
  
nt = length(tVec); 
nx = length(xVec); 
ny = length(yVec); 
  
% analytic solution monitoring at the center location 
mVecAn = size(nt); 
for tIdx=1:nt 
    mVecAn(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, in, sSize); 
end 
  
%-- Experiments for Figure 6 -- 
%         x=0         y=0         x=L         y=L 
ep1 = [  L*0.20      L*0.70      L*0.5       L*0.9    ; % location 
          0.03       0.0         0.0         0.0 ];     % voltage 
ep2 = [  L*0.20      L*0.70      L*0.5       L*0.9    ; % location 
          0.03       0.03       0.0         0.0 ];      % voltage 
ep3 = [  L*0.20      L*0.70      L*0.5       L*0.9    ; % location 
          0.03       0.03       0.03       0.0 ];       % voltage 
ep4 = [  L*0.20      L*0.70      L*0.5       L*0.9    ; % location 
          0.03       0.03       0.03       0.03 ];      % voltage 
       
ep3ip1 = [  L*0.20      L*0.70      L*0.5       L*0.9    ;  % location 
          0.03       0.03       -0.03       0.03 ];         % voltage 
ip2 =  [  L*0.20      L*0.70      L*0.5       L*0.9    ;    % location 
          0.0       -0.03       -0.03       0.0 ];          % voltage      
       
tsVal = 0.030; % threshold value 
  
for tIdx=1:nt 
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    mv1(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep1, sSize); 
    mv2(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep2, sSize); 
    mv3(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep3, sSize); 
    mv4(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep4, sSize); 
    mvep3ip1(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ep3ip1, sSize); 
    mvip2(tIdx) = u(mLoc(1),mLoc(2), tVec(tIdx), L, C, D, ip2, sSize); 
    ts(tIdx) = tsVal; 
end 
figure (1)  % comparing different number of excitatory input signal 
plot(tVec,mv1,tVec,mv2,tVec,mv3,tVec,mv4,tVec,ts); 
legend('1 EPSP','2 EPSP','3 EPSP','4 EPSP','Threshold'); 
title('Vm at the center'); 
ylim([-.03 0.06]); 
xlabel('Time (second)'); 
ylabel('Vm (volt)'); 
  
figure (2)  % comparing excitatory vs inhibitory input signal 
plot(tVec,mv4,tVec,mvep3ip1,tVec,mvip2,tVec,ts); 
legend('4 EPSP','3 EPSP + 1 IPSP','2 IPSP','Threshold'); 
title('Vm at the center'); 
ylim([-.06 0.06]); 
xlabel('Time (second)'); 
ylabel('Vm (volt)'); 
  
% -- 2D Animation for Analytic Solution -- 
 potAn = zeros (ny, nx); 
 figure(3) 
 for tIdx=1:nt 
     for xIdx=1:nx 
         for yIdx=1:ny 
             potAn(yIdx, xIdx) = u(xVec(xIdx),yVec(yIdx), tVec(tIdx), L, C, D, 
in, sSize); 
         end 
     end 
     surf(xVec, yVec, potAn); 
     xlim([0,L]); 
     ylim([0,L]); 
     %zlim([-1 1.5]);     
     xlabel('x'); 
     ylabel('y'); 
     zlabel('voltage'); 
     %title('T = 400'); 
     colorbar 
     M(tIdx) = getframe; 
end 
%movie2avi(M,'animation.avi');%,'compression','none'); 
  
%-- 2D Finite Difference Method -- 
potFDM = zeros (ny, nx); 
potFDM_nxt = zeros(ny, nx); 
for xIdx=1:nx 
    for yIdx=1:ny 
        potFDM(yIdx,xIdx) = u(xVec(xIdx),yVec(yIdx), 0, L, C, D, in, sSize); 
    end 
end 
  
dT = T/ntStep; 
dX = L/nxStep; 
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dY = L/nyStep; 
eX = D*dT/dX^2; 
eY = D*dT/dY^2; 
  
%-- Single Monitoring Point -- 
mVecFDM = size(nt); 
mxIdx = findIdx(xVec, mLoc(1)); 
myIdx = findIdx(yVec, mLoc(2)); 
frameIdx = 1; 
%----- display of num sol monitor -------- 
figure(4) 
for tIdx=1:nt 
if (tIdx == 20) % change this condition as appropriate for snapshot 
    surf(xVec, yVec, potFDM); 
    xlabel('x'); 
    ylabel('y'); 
    zlabel('voltage'); 
    title('T = 400');     
    xlim([0,L]); 
    ylim([0,L]); 
    zlim([-1 1]);     
    colorbar 
    caxis([-0.001 0.001]); 
    M(tIdx) = getframe; 
    M(frameIdx) = getframe; 
    frameIdx = frameIdx + 1; 
end 
    mVecFDM(tIdx) = potFDM(myIdx, mxIdx);     
    for xIdx=1:nx 
        for yIdx=1:ny 
            if (xIdx == 1) 
                xVal = potFDM(yIdx, xIdx+1) - potFDM(yIdx, xIdx); 
            else if (xIdx == nx) 
                    xVal = -potFDM(yIdx, xIdx) + potFDM(yIdx, xIdx-1); 
                else 
                    xVal = potFDM(yIdx, xIdx+1)-2*potFDM(yIdx, xIdx) + 
potFDM(yIdx, xIdx-1); 
                end 
            end 
             
            if (yIdx == 1) 
                yVal = potFDM(yIdx+1, xIdx) - potFDM(yIdx, xIdx); 
            else if (yIdx == ny) 
                    yVal = -potFDM(yIdx, xIdx) + potFDM(yIdx-1, xIdx); 
                else 
                    yVal = potFDM(yIdx+1, xIdx)-2*potFDM(yIdx, xIdx) + 
potFDM(yIdx-1, xIdx); 
                end 
            end 
            potFDM_nxt(yIdx,xIdx) = (1-C*dT)*potFDM(yIdx,xIdx) + eX*xVal + 
eY*yVal; 
        end 
    end 
    potFDM = potFDM_nxt; 
end 
  
% -- Comparing FDM vs Analytical Solution for Figure 7 
figure (5) 
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plot(tVec, mVecFDM, tVec, mVecAn); 
legend('Euler FDM','Analytical'); 
title('analytical vs numerical method'); 
xlabel('Time (second)'); 
ylabel('Vm (volt)'); 
ylim([-0.003 0.003]); 
  
end 
  
function out = findIdx(vec, value) 
nv = length(vec); 
out = nv; 
for i=1:nv-1 
    if(vec(i)<=value & value < vec(i+1)) 
        out = i; 
        return; 
    end 
end 
end 
  
function out = u(x,y,t, L, C, D, in, sSize) 
out = 0; 
for m=0:sSize 
    for n=0:sSize 
        tVal = exp((-C-D*((m*pi/L)^2+(n*pi/L)^2))*t); 
        xZ = in(2,1)*cos(n*(pi/L)*in(1,1)); 
        yZ = in(2,2)*cos(m*(pi/L)*in(1,2)); 
        xL = cos(m*pi)*in(2,3)*cos(n*(pi/L)*in(1,3)); 
        yL = cos(n*pi)*in(2,4)*cos(m*(pi/L)*in(1,4)); 
        xyVal = (xZ + xL + yZ + yL)*cos(m*pi*x/L)*cos(n*pi*y/L); 
        if (m==0) 
            if (n==0) 
                area = L^2; 
            else 
                area = L^2/2; 
            end 
        else 
            if (n==0) 
                area = L^2/2; 
            else 
                area = L^2/4; 
            end 
        end 
        out = out + exp(-C*t)*xyVal*tVal/area; 
    end 
end 
end 
 
 
 

8.5. Appendix E: MATLAB PDE Toolbox Code 
 
function pdemodel 
[pde_fig,ax]=pdeinit; 
pdetool('appl_cb',10); 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'PlotBoxAspectRatio',[870.40000000000009 580.26666666666677 
725.33333333333337]); 
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set(ax,'XLimMode','auto'); 
set(ax,'YLim',[0 2]); 
set(ax,'XTickMode','auto'); 
set(ax,'YTickMode','auto'); 
  
% Geometry description: 
pderect([-0 1 1 0],'R1'); 
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1') 
  
% Boundary conditions: 
pdetool('changemode',0) 
pdesetbd(4,... 
'neu',... 
1,... 
'0',... 
'0') 
pdesetbd(3,... 
'neu',... 
1,... 
'0',... 
'0') 
pdesetbd(2,... 
'neu',... 
1,... 
'0',... 
'0') 
pdesetbd(1,... 
'neu',... 
1,... 
'0',... 
'0') 
  
% Mesh generation: 
setappdata(pde_fig,'Hgrad',1.3); 
setappdata(pde_fig,'refinemethod','regular'); 
setappdata(pde_fig,'jiggle',char('on','mean','')); 
pdetool('initmesh') 
pdetool('refine') 
pdetool('jiggle') 
  
% PDE coefficients: 
pdeseteq(2,... 
'.0007',... 
'0.0',... 
'0',... 
'1.0',... 
'linspace(0,400,100)',... 
' 0.001*(x==0).*(y==0.2) - 0.002*(x==0.7).*(y==0) + 0.005*(x==1).*(y==0.5) 
- 0.003*(x==0.6).*(y==1)',... 
'0.0',... 
'[0 100]') 
setappdata(pde_fig,'currparam',... 
['.0007';... 
'0    ']) 
  
% Solve parameters: 
setappdata(pde_fig,'solveparam',... 
str2mat('0','1872','10','pdeadworst',... 
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'0.5','longest','0','1E-4','','fixed','Inf')) 
  
% Plotflags and user data strings: 
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 7 0 1 1 0 100 1 0 1 0 0 1]); 
setappdata(pde_fig,'colstring',''); 
setappdata(pde_fig,'arrowstring',''); 
setappdata(pde_fig,'deformstring',''); 
setappdata(pde_fig,'heightstring',''); 
  
% Solve PDE: 
pdetool('solve') 
 
 


